Linear Eсkman friction in the mechanism of the cyclone-anticyclone vortex asymmetry and in a new theory of rotating superfluid

The detected phenomena of shunting of blood from large arterial trunks into large venous vessels is considered herein. The Cardiocode…

The paper highlights the key stages on the way of a proper understanding of the magnetic field anti-tumor influence mechanisms…

The article considers the development of the periodic table of ECG phase changes which should reflect the variety of the…

This paper describes a novel approach to the analysis of electrocardiographic data based on the consideration of the repetitive P,…

Original research

Linear Eсkman friction in the mechanism of the cyclone-anticyclone vortex asymmetry and in a new theory of rotating superfluid

Sergey G. Chefranov1

1 Obukhov Institute of Atmospheric Physics of RAS, 119017, Russia, Moscow, Pijevskaya str.3

* Corresponding author:
  This email address is being protected from spambots. You need JavaScript enabled to view it.

Aims

The observed experimental and natural phenomenon of cyclone-anticyclone vortex asymmetry implies that a relatively more stable and showing a longer life, as well as a relatively more intense mode of rotation with an anticyclonic circulation direction (opposite to the direction of rotation of the medium as a whole) is realized as compared with an oppositely directed rotation of the cyclonic vortex mode. Until now, however, it was not a success to identify a universal triggering mechanism responsible for the formation of the corresponding breaking of chiral vortex symmetry.

Materials and methods

In this paper we reveal the said linear universal instability mechanism of breaking of chiral symmetry in the sign of vortex circulation in the rotating medium in the presence of linear Eckman friction.

Results

Obtained is a condition for the linear dissipative - centrifugal instability (DCI), which leads (only when considering the external linear Eckman friction for an abovethreshold value of rotation frequency of the underlying boundary surface of fluid) to the breaking of chiral symmetry in the Lagrangian fluid particle dynamics and the corresponding realization of the cyclone-anticyclone vortex asymmetry.

Conclusion

A new non-stationary solution to the problem for the disc which carries out weak axial-torsional oscillations in fluid with the frequency which are superimposed on its rotation with the previously considered frequency ω0 in connection with the experimental data on the rotating superfluid helium II has been found. It gives the possibility to conclude that the effects of external, linear on velocity, friction forces must be important to include into consideration for the solve of any fundamental problems of hydrodynamics in bounded systems (as for the blood dynamics in cardiovascular system, for example).

Imprint

Sergey G. Chefranov. Linear Eсkman friction in the mechanism of the cycloneanticyclone vortex asymmetry and in a new theory of rotating superfluid; Cardiometry; No.4; May 2014; p.46-69; DOI:10.12710/cardiometry.2014.4.4669 Available from: http://www.cardiometry.net/no4-may-2014/new-theory-of-rotating-superfluid

Keywords

UPCOMING ISSUE

Our book in WoS™ Core Collection

We are glad to inform you that the book "Theoretical principles of heart cycle phase analysis" written by researchers from Russian New University has been accepted and indexed in The Book Citation Index in Web of Science™ Core Collection

VIDEO ABOUT CARDIOMETRY

Founders of a new fundamental science: Cardiometry

www.vzernov.com

www.mrudenko.com

www.ovoronova.com

OUR PARTNERS

Russian New University


Your online partner for English language editing, proofreading, medical writing, formatting, design & development and publication support services


Online ECG / Telemetry Certification Course

Teach you everything you need to interpret arrhythmia and administer a 12-lead EKG


Cardiocode - unique diagnostics of the heart