Mechanisms of electromagnetic influences and effects on membrane systems in neurons and cardiomyocytes

The paper describes some concepts on processes occurring in the neuroendocrine and immune systems during development of general unspecific adaptational…

Leonardo da Vinci perhaps was the first who paid attention to the energetic efficiency of existence of vortices emerging near…

The article aims at describing the basic system criteria of the ECG interpretation on the basis of the cardiac cycle…

It is shown that the mechanism of action of magnetic fields at body level is based on the development of…

Original research

Mechanisms of electromagnetic influences and effects on membrane systems in neurons and cardiomyocytes

Valery I. Orlov1*Mikhail Y. Rudenko2Alla I. Shikhlyarova3Alexander A. Sukhov1Evgeniya Y. Kirichenko1Svetlana Y. Filippova1Vladimir A. Zernov2Dmitry F. Makedonsky2Konstantine K. Mamberger2Sergey M. Rudenko2

1 Academy of Biology and Biotechnology, Southern Federal University
Russia, 344090, Rostov-on-Don, Stachki av., 194/1

2 Russian New University
105005, Russia, Moscow, Radio str., 22

3 Rostov Research Institute of Oncology, Ministry of Healthcare of the Russian Federation
Russia, 344037, Rostov-on-Don, 14th Line st. 63

* Corresponding author:
   +7 (928) 909-10-95
  This email address is being protected from spambots. You need JavaScript enabled to view it.

Aim

The aim of our studies was to discover responses of the membrane systems in neurons and cardiomyocytes as well as mechanisms of influences and effects produced by the broadband-spectrum stochastic electromagnetic radiation (BBSS EMR) on them according to data on membrane potential (MP) levels and action potential (AP) parameters obtained by us.

Materials and methods

Neurons from the isolated central neural system (CNS) of the snail Helix pomatia were selected to serve as a model for our experiments. We applied an electrophysiological technique implying recording of intracellular potentials of a neuron.

Results and discussion

We are pioneers in the world science who succeeded in obtaining objective evidence for the effects made by the broadband-spectrum stochastic electromagnetic radiation (BBSS EMR) on intracellularly recorded electrophysiological properties of a CNS neuron.

Conclusion

The regulation of the functional state of a neuron in the neuron network with the use of a non-invasive remote method of a control action has been objectively shown herein. According to our philosophy, a neuron is considered as an analogue of the formation of a transmembrane potential by a cardiomyocyte and at the same time as the basic model of the neural cellular auto-regulation of the phase-structured performance of the cardiovascular system.

Imprint

Valery Orlov, Mikhail Rudenko, Alla Shikhlyarova, Alexander Sukhov, Evgeniya Kirichenko, Svetlana Fillipova, Vladimir Zernov, Dmitry Makedonsky, Konstantin Mamberger, Sergey Rudenko. Mechanisms of electromagnetic influences and effects on membrane systems in neurons and cardiomyocytes. Cardiometry; Issue 11; November 2017; p.17–27; DOI: 10.12710/cardiometry.2017.11.1727; Available from: http://www.cardiometry.net/issues/no11-november-2017/electromagnetic-influences

Keywords

Our book in WoS™ Core Collection

We are glad to inform you that the book "Theoretical principles of heart cycle phase analysis" written by researchers from Russian New University has been accepted and indexed in The Book Citation Index in Web of Science™ Core Collection

VIDEO ABOUT CARDIOMETRY

OUR PARTNERS

Russian New University


Your online partner for English language editing, proofreading, medical writing, formatting, design & development and publication support services